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REPETITIVE PLAY OF AN UNKNOWN GAME AGAINST NATURE

by Bruno O, Eubert
ABSTRACT

A repetitive play of a game against Nature is considered under the
assumption that the player knows nothing about the game except his own
set of strategies, After each play, he is told the value of the random
loss incurred by him, A strategic rule for the player is defined with
the property that the average loss achieves asymptotically the minimum
functional of the game in probability uniformly in all sequences of
Nature's strategies. The rate of convergence of expected average losses

is shown as well.
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Chapter I
INTRODUCTION

Let us consider a sequence of plays of a two-person game, the
generic game, where the first player is "Nature.” The term 'game against
Nature" is widely used in both game theory and statistics, but in various
senses. Nature is sometimes considered as a player with motivations un-
specified or unknown to the other player or sometimes as a player who
chooses his strategies so that they form a sequence of independent,
identically distributed random variables. Here, we will define Nature
as & player who selects his strategies arbitrarily but with no regard
whatsoever to the actions of the other player or to the resulting sequence
of payoffs. Besides the fact that this notion seems to correspond better
to the intuitive idea of Nature as a passive player, our definition is
motivated mainly by the application of the problem of repetitive play of
a two-person game--called henceforth a sequential game--to statistics,
Our concept of Nature implies that she selects the whole sequence of her
strategies arbitrarily but once and for all at the beginning of the
sequence of plays, which is exactly the case considered in the so-called
sequential compound decision problem of mathematical statistics., This
concept, which includes the third concept mentioned above (called the
empirical Bayes approach in statistics), differs, however, from the first
two, which are, in any case, rather vague.

As for the second player--to be referred to as the player--he is
considered a player in the true sense of game theory; that is, he is
supposed to select his strategies with the intention of minimizing the
payoff to his opponents, i.e., his loss. Since we are going to consider
the whole situation from the point of view of the player, we will talk
about losses rather than payoffs. 1In the sequential game, it is assumed
that the player will utilize for his strategy choices any information
about the development of the sequence of plays he may have obtained or
inferred during the past plays in the sequence, Of course, he is not
supposed to know the sequence of Nature's strategies beforehand; other-

*
wise, his task would be trivial.

#*
Provided he knows the loss function. 1If not, then this case is included
in the case we are considering in this paper.
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Since we are dealing with the sequential game, the natural criterion
of player's performance in the long run is the average logs incurred by
him. It has been indicated (see, e.g., [6], [4], or [9]) that the goal
he should try to achieve is reduction of his average loss to the minimum
loss of a single game of identical structure, in which Nature (the other
player) would use the mixed strategy equal to the empirical distribution
up to the point of the pure strategy sequence she is using in the seouen-
tial game., The problem thus consists essentially in finding a rule for
the player, which would guarantee him that he will achieve this goal, at
least asymptotically, no matter what sequence of strategies Nature uses,.

In the past decade or two, several papers have dealt with this
problem, especially its application to statistics. After the pioneering
works of H. Robbins [6] and A. gplgek {8], who both confined themselves
to the empirical Bayes problem, two basic strategic rules with the desired
property were stated by D. Blackwell in [2], [3], and by J. Hannan in [4].
All the other rules suggested later were derived essentially from one of
these two basic rules.

Various approaches to the problem may be classified according to
the assumptions made about the information available to the player.
This, in turn, may be divided into assumptions about

(1) the knowledge of the generic data of the game, i.,e,, the sets

of strategies and the loss function, and

(2) the data received during the sequence of plays, i.e., for

example, the strategies used by Nature in past plays of the
sequence or the losses incurred.

Both D. Blackwell and J. Hannan assumed that (1) the player has
complete knowledge of the generic game and that (2) after each play, he
learns the strategy Nature used. In the statistical version of the
sequential game, the variety of possible assumptions in either category
1 and 2 is, of course, much wider, Nevertheless, as far as is known to
the author, it has always been assumed that at least (1) the player knows
the loss function of the generic game and (2) a random estimate of some

sort is available to estimate the empirical distribution of Nature's

strategies.

SEL-67-098 2
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In this paper, we are going to make entirely different assumptions
about the player's information. We will assume that:
(1) Except for his own set of strategies from which to choose, the
player knows nothing about the generic game; i.e,, he knows
neither the set of Nature's strategies (which may be infinite)

nor the loss function., Moreover, the loss function itself is
supposed to be random,

(2) After each play, the player is told the value of the random

loss incurred by him in the play.

We will define a rule for the player based on these two requirements,
Later we will show that, under relatively moderate assumptions--namely,
the set of player's strategies are finite and the random loss function
has a nonnegative mean and uniformly bounded third moment--the rule pos-
sesses an optimality property similar to those of Blackwell's and
Hannan's rules. More precisely, we will show that the difference of
the average loss and the appropriate value of the minimum functional
of the generic game goes to zero in probability uniformly in all sequences
of Nature's strategies,.

To illustrate the extent to which the player's information is re-
stricted, let us consider the following simple example. Suppose that
both Nature and the player each has two strategies, say 3(0), 6(1)
and a(o), a(l), respectively. The player is asked to play repeatedly

one of the two games:

PLAYER PLAYER
2(0) | (1) 2(0) | (1)
NATURE ‘9(0) 0 X NATURE ,3(0) X 0
1‘)(1) X o 13(1) X 5
GAME 1 GAME 2

where the entry O means that the player's loss is zero, while, if the
entry is X, a coin is tossed and the player incurs a loss, say $1, if
the outcome of the toss is a head, and zero if it is a tail, Clearly,

the best rule for game 2 would be to use the strategy a(l) all the time,

3 SEL-67-098
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On the other hand, the best rule for game 1 will depend on the relative
frequencies of each ;(0) and g(l) in the sequence of Nature's strategies
and is, therefore, different from the first one. However, by our assump-
tions, the player knows nothing about the game but the set {a(o). a(l)]
and therefore he cannot distinguish between game 1 and game 2, Thus he
cannot decide which of the two rules mentioned he should use, even if he
were supplied some information about the sequence Nature is going to use.
The rule defined in Chapter III1 of this paper is, howu.ver, invariant

with respect to the game structure and allows the player to do as well

as if he were told both the relative frequencies of a(o), a(l) and which
of the two games he has to play.

The rule is relatively simple and more or less suggested by intuition.
Before each play in the sequence, the player decides whether the play is
going to be a test play (aimed to gain 1nformat10n) or an active play
(limed to minimize the loss). These decisions are based on the outcomes
of random experiments--independent flips of a coin where the probability
of a head (determining a test play) goes to zero. At a test play. a
strategy 18 chosen randomly with equal probabilities. At an active play,
the strategy is selected for which the loss accumulated during the past
test plays was minimum., 1In other words, each strategy is tested from
time to time, more and more infrequently but still often enough to guar-
antee the adequacy of the estimate obtained for the player's decisions,

The rule is defined in Chapter III. Chapter II introduces the
notation, basic assumptions, and properties of the generic game. In
Chepter IV several lemmas are proven; these are needed for the proofs
of Chapter V. Chapter V contains the main theorem (Theorem 1), in which
the convergence of average losses is established; Theorems 2 and 3, which
give the rate of convergence of expected average losses; and Theorems 4
and 5, which deal with the special case when Nature's moves constitute a
sequence of independent identically distributed random variables, Dis-
cussion of the results and comments on possible generalizations are con-
tained in Chapter VI,

In this paper, we confine ourselves deliberately to the case of
sequential games against Nature and do not extend the results to the more

general case of the sequential compound decision problems, Our intention

SEL-67-098 . 4




is to investigate the game situation in detail and thus to establish a
basis for further extension to the statistical decisio: case. It has
been shown by the author [10] that this can be done. It is hoped that
this work may stimulate further effort in this direction,
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Chapter II
PREREQUISITES

A, Notation

Throughout this paper, the symbol (Q,4,P) will always denote the
basic probability space, where () with generic elements u, is the set of
elementary events, A is a g-field of subsets of ), and P is a probability
measure on (Q,4). Random variables will be designated by capital letters,
with the argument w omitted unless necessary. Sets from A defined as
sets of those we for which a statement P is true will be denoted by (?).
The indicator function of a set M will be denoted by IM; the complement
of a set MC(, by Mc. The expectation of a random variable X will be
denoted by E{X); conditional expectation of X given the g-field FCA
induced by a random variable Y will be denoted either by E{XIY] or by
E[x|§] and used in the sense of the definition in [5], p. 341; similarly,
for conditional probability. Other symbols and/or definitions will be
used in accordance with [5].

As for other mathematical symbols, a real-valued function f will
sometimes be written as f£(.) to distinguish it from its value f(x) for
the argument x. If f is defined on a finite ordered set A, we will also
use the symbol £(.) to denote the Euclidean vector with coiponents £(a),
a€A, The symbol Rm will stand for m-dimensional Euclidean space; the
components of a vector xeRIn will be denoted by superscripts in paren-
theses: x = (x(l),...,x(m)). The inner product of two vectors xeRm
and yeam will be denoted by x°y. If {xn: n=1,2,,,.)] is a numerical
sequence, the symbol (;;) will denote the arithmetic mean

n

(E) Y z X, .

k=1

If [yn >0: n=1,2,...] is another sequence of rerl numbers, the symbol

x = O(yn) will designate the property

7 SEL-67-098
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B. The Generic Game

As mentioned in the Introduction, a sequential game consists of
repetitive plays of a generic game, In this section, we will define
and investigate some properties of the latter. 8Since our model of a
sequential game should serve primarily as a basis for the sequential
compound decision problem, the terminology and symbols introduced below
differ slightly from those common in game theory proper,

(1)

Let 6 be an abstract set--the set of parameters §; let A = (a 500

a(m))--the set of strategies--be a finite set of m elements.
Let W= (W(g§,a): 9€O, acA} be a two-parameter family of integrable

random variables such that for every Wel

0<EW) <+, (2.1)

We will call 0 the random loss function., The triplet (G,A,DD will be

referred to as a generic game,
In this paper, we will always assume that the generic game (8,A,l)

is nondegenerate in the sense that for every acA there exists j€6 such

that 4
E(w(s,a)} #0 . (2.2)

Clearly, there is hardly any loss of generality in this assumption since
we can always augment the set © and the family W) so that (2.2) is true,
In subsequent sections, we will be making some further assumptions

concerning integrability of the family W. For reference purposes, let

us call

Assumption (I0; r); r 2 1 an integer: There exists a finite constant

Co such that for every 3€0 and neA

[l~:|w(,5,,m)|"]1/r <c, .

SEL-67-098 8
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Assumption (I'; ©): There exists a finite constant C, such that for

every J€@ and a€A

|W(s,a)| < c, - a.s.

Next, we have to introduce mixed strategies. The set A being
finite, a mixed strategy ¢ is simply defined as a vector 0 = (a(l 1ee sy
a(m)) from the (m-1)-dimensional probability simplex @ in R,

d={0eR": a(i) >0;i=1,...,m; z a<i) 1Y P (2.3)
i=1

We will need a similar concept defined for the set of parameters &.
Let T be the g-field of all subsets of ©; let T be the class of all
finite signed measures on the measurable space (@,5) defined by the
property: for each TeT there exists a finite set (ﬂl,...,an} such that

T(8 - (8),.0049,}) =0 .

In other words, all the measures TE€T are purely atomic with a finite
number of atoms. As an analog of the set of mixed strategies ( will
serve the subclass To of all probability measures in T. If TeTo is
such that T({3§)) = 1 for some €O, we may write simply 3 instead of T.

From now on, let us denote

W(ﬁ.a) = E(W(a,a)] ’ (204)

where W(9,a)ell, and let for every TeT, aed,

w(T,a) =L z W(a,a(i)) a(i) at(s) . (2.5)
i=1

Since, by the definition of the class T, the integral in (2.5) is only a
finite sum, w(.,.) is a well defined finite function on T X (. More-
over, it is easily seen that with addition and multiplication by a

9 SEL-67-098
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constant naturally defined on both T and d, w(.,.) is also a bilinear
functional on T X (.

Let (8,A,ll) be a generic game with a random loss function; let for
every Te€T,

@(T) = min{w(T,a)] F (2.6)
acA

We will call ¢ the minimum functional of the generic game (@,A,w).
The minimum functional has a simple property. Let s* = (s* 1 0000
»
8 (m)) be a mapping from Rm intc (i defined for every x = (x L yes e

x(m))eRm by

1 if x(i) < min [x(J)]
J=1,...,m
I#
s*(i)(x) = a(i) if x(i) = min {x(J)] ; (2.7)
J=1,...,m
0 it x(i) > min {x(J)]
J=1,...,m
i=1,...,m, Then, clearly, for every TeT,
(1) = wit,8*(w(1,.))) . (2.8)

We will use this property to prove the following lemma to be needed

later,

Lemma 1, Let T€T, x€R", Q. = s*(w(T,.) + x), aed.

Then

1

w(T,al) - w('t,az) < x° (az-al) E (2.9)

Proof.
Let t €T be such that w(tx,.) = x. It is easy to see that such t_
exists for every xeR" since, by assumption (2.2), we can always find

(8y7+++198,}C O such that w(ai,a(i)) # 0 for every i = 1,...,m and then

SEL-67-098 10
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set tx((si)) = x(i)[w(si.a
tx(@ - (61,---,6m]) = 0.
Next, by (2.6) and (2.7)

y 1i=1,...,m; and

ot + tx) = w(T + tx,al) < w(t + tx,az) : (2.10)
which implies
0 < w(t+ tx,ozz) - wit + tx,al) : (2.11)
Finally, linearity of w(.,a) gives

w(T + tx’ak) = W(T'ak) + X ak; A=1,2; (2.12)

which together with (2.11) gives (2.9).
This completes the Proof of Lemma 1.

C. The Sequential Game

In the sequential game against Nature, Nature first selects a
sequence of parameters 61’82"" from the parameter space ©, For further
purposes, we will assume that the sequence always begins with a "dummy"

parameter 60 such that

(2.13)

|
o

W(GO.-) = Wo(ﬁo.-) =

We will denote the set of all sequences {an: n=0,1,...} by d”,
this representing the set of all Nature's strategies in the sequential
game. With every sequence j = [en: n = 0,1,...)€é”, we will associate
a sequence [TneT: n=0,1,,,,) defined by

Tn(B) =<% ZE IB(ﬁk); BeJ; n=1,2,...; ro(.) =0, (2.14)
k=1

Thus, for n =1,2,..., TneTo is the empirical distribution of § defined
by {ﬂl....,ﬁn], and Tn(B) is the proportion of g 's, k = 1,...,n, in B.

11 SEL-67-098
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Let [an: n=12,...) be a sequence of pure strategies used by the
player., The result of the sequential game is then a sequence of random

losses defined as a sequence of independent random variables

W (5,8 ):n=12..), (2.15)

where the random variable wn(an,an) is distributed as W(g,a)el’ for
3=19,a=a.,

As mentioned before, the player selects his mixed strategies at each
play on the basis of his past experience, using for his choices a stra-
tegic rule, which tells him for each n = 1,2,.., the mixed strategy Sn
he has to use at the n-th play. Since each Sn thus depends on the out-
comes of the past plays and since the strategic rule itself may be a
randomized rule, the sequence [Sn: n=1,2,...]J--to be called the sequence
of mixed strategies generated by the rule--is a sequence of random vectors
with values in (.

A strategic rule also generates a sequence of pure strategies

(Yn: n=1,2,,,.) defined as a sequence of random variables with values

in A such that if ?n denotes the g-field induced by the family [Sl,...,
00
S wl(al,.),...,wn(an,.)} then for every n = 1,2,,..; 3€© , 1 =1,.,.,m

p{{yn - (1), sn} f s:(;i)’ a.s. (2.16)

and
g, and Wn(en,.) are independent. (2.17)

SEL-67-098 12



Chapter 111
THE STRATEGIC RULE

In this chapter, we will define a strategic rule satisfying the
assumptions we made about the information available to the player.

Later (Chapter V) we will show that this rule is weakly asymptotically

optimal in the sense that if [Yn: n=1,2,...) is the sequence of pure
strategies gencrated by it, then

n
1 P
LS waen) - ulr) =0
k=1

uniformly in ﬁed”. This means that, by using this rule, the player can
do as well as if he knew all the data about the game structure and if he
werc told the asymptotic empirical distribution of the §'s in the sequence
Nature is going to use. Moreover, he can do this uniformly in all
Nature's possible choices. More precisely, given € > 0 and & > 0, there
exists a positive integer n(e,d) with the property that, if the number

of plays exceeds n(€,d), the average loss will differ from the goal ¢
more than € with probability less than ® no matter what the sequence of
9's was used by Nature. The integer n(€,5) can be obtained from Theorem
2 or Theorem 3 of Chapter V, which give the rate of ronvergence,

Let
(u:n=0,1,..) (3.1)

be a sequence of independent random variables, taking values O and 1,

and let for every n =0,1,...
P(U =1)=p >0, (3.2)

Further, let

(V.:n=0,1,...) (3.3)

13 SEL-67-098




be a sequence of independent identically distributed random vectors

taking values in the set (i and such that for every i = 1,.,.,m,
i i -1
p{vn s (51""'%)} =i, (3.4)
where 8; is the Kronecker delta.

The random variable Un determines whether the n-th play will be a
test play (Un = 1) or an active play (Un = 0), while the V_ determines
the strategy to be used in a test play.

The sequences (3.1) and (3.3), as well as the sequence (2.15), are
also assumed to be mutually independent (for every ﬁgd”).

Next, let

(¥,:n=0,1,..) (3.5)

be a sequence of random vectors with values in Rm defined for every

967 n =0,1,... by
-1
Y =Ump (n + wn(an,.)) v, (3.6)

n n
,...,n(m)) is the vector with all components n(i) = 1,

(1)

Thus the vector Y has either all components zero (if U? 0) or has

where 1 = (7

only one nonzero component numely that one for which V = 1, the com-
ponent being then equal to mp (1 +W (9 1)),

The sequence (3.5) therefore represents the information the player
is receiving along the sequence of test plays, namely, the pure strategy
used and the loss incurred. '

The strategic rule we are suggesting is defined by means of the

sequence of mixed strategies [Sn: n=12,,,.) generated by it as

follows:

s =Uv + (1-U)s" Z \ (*)
k=0

»
where s is the mapping (2.7).

SEL-67-098 14




Notice that

k=0

(1)

if the n-th play is an active one, thus selecting the strategy a' ‘€A
for which

n-1
ey,

is minimum and in a test play Sn = Vn selects any a€A with equal

likelihood.
We will refer to this strategic rule as to the strategic rule (*).

15 SEL-67-098
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Chapter 1V
SOME AUXILIARY RESULTS

In this chapter, we are going to prove several lemmas, which will
be used in the next chapter,

Let § = {an: n = 0,1,...}€CP be a sequence of 3's; let {Yn:
n =0,1,...]) be the sequence of randon vectors (3.5). By the assumption

of integrability of the random loss function
E{Y'(li)} =1+ w(en,a(i)); i=1,,..,m (4.1)

exists and is finite so that we can center the random vectors Yn at

expectationsg:

n

¥ - (ﬁ(l),...,?ﬁm)); i?x(li) = Y,(li) - E{Y‘(li)}; 1=1,...m. (4.2)

We will need bounds for absolute moments of the random variables

?ﬁi). Let us assume that the assumption (IJ;r) holds for some r > 3,

and let 1 <r' <r. We have

E{ﬁ,(,i)'" wn(an,a(i))} - I“‘?;l [“wn("n'“(i))]' [1+ “’(ﬁn»&(i))]lr'm'lpn

ri

RGO IRELN

]
r'-1r'-1r'-1 (1) |’
<2 Tm Tp [|1 +wn(en,a )

+ 2|1 + w(an,a(i))lr'] (4.3)

by the Cr-inequality ([5], P. 155) and the fact that

L Ve 1) di=ptt
LI <1l<m P, .
17 SEL-67-098
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Further, by Gﬂ;r) there exists a finite constant C., such that, say

1

rl

, for every 96, acA , (4.4)

E[1 + wn(g,a)|" <c

and consequently by Jensen Inequality also

|1+ w(a,a)[rl < C; for every 9€©, a€A , (4.5)
Hence and from (4.3) we have immediately
(4.6)
Next, let us introduce the random variables
?éij) = ~§1) - ?ij); I =1,e0:e5m; J =1, 06e;m; 0 =1051,0.. & (4.7)

By the C_-inequality and (4.6) we have now

!
~(13),F r' r'-11-r'
|¥n| _<_(4cl) m P, : (4.8)
We will need also a lower bound for the variance of ?ﬁij), i # 3%

Direct computation gives
E{ﬁiij)lz“",,(ﬂn"(i))' "’n("n"m)}
& mp;l[Ell + wn(on,a(i))|2 +E|1 + wn(sn,a(”)lz] - |A£13)|2 , (4.9)

where we denoted

Aﬁu) - w(ﬂn,a(i)) i “’(“’n'“(”) . (4.10)
Using again Jensen Inequality .

E|1 + Wn(ﬂn,a)lz > 1+ w(ﬂn,a)lz , (4.11) :

SEL-67-098 18
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we obtain from (4.9)

Eli‘rr(lij)"" > 2mp ! [1 . w(“’n'“(i)) . ‘"(ﬁn"(J)ﬂ

+ (mp;l ) 1) [“,2(,3“,&(1)) +w2({)‘1,,}.1))]

+ 2w(en,a(i))w(g (J)) > 2mp

+ (mp;l - )[wz(gn,a(i>) + wz(en,a(J))] (4.12)

since w(.,.) is nonnegative [assumption (2.1)]. Hence, if P, < m-l,

we have

2
5(13) -1
E[Y "] >a2m ~ . (4.13)
Thus we have proven

Lemma 2., Let ?ﬁi) and ;ﬁij); i=1,.¢e0m; §j=1,...,m; be the random
variables (4.2) and (4.7), respectively; let assumption (W;r) for

some r > 3, be satisfied. Then there is a constant C, < + « such

1
thet for every n = 0,1,... and 1 <r' <r
r'
~(1 '«1 1-r'
E|Y!(l )| < (2c S S (4.14)
and
rl
(i ''r'-1 1-r'
El",(, J)l < (401)rm P, - (4.15)
If, moreover, P, < m-l, then for i # J
2
> -1
E|Y§13)| >2mp " . (4.16)
19 SEL-67-098
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(13)
n
their consecutive sums have another property expressed by

Since the random variables ? ; n=0,1,,,,; are independent,

Lemma 3. Let

n
zr(‘“) - a71/2 Z ?}(‘“) , (4.17)
k=0

n=1,2,,.,.; 1 =1,...,m; j=1,.,.,m; 1 # J, let pn < m-l;

n=0,1,...; let assumption (I{;3) hold. Let J(xl,xz) denote

either of the intervals [xl,xz), (xl,xz], where -0 < x. < x2 < 40,

1
Then
n -1/2
P{zéiJ)e J(xl'xz)} < (x,- xl)(2m)'1/2 n1/2 jz p;l
k=0
£ n -3/2
XL

k=0 k=0

where C, is the constant from Lemma 2 and 8 is the Berry-Esseen

1
constant.
Proof.
Let fﬁij) denote the distribution function of the law
n 2 -1/2 n ( )
3(13) )]
el S EFM DR E
k=0 k=0

let G be the distribution function of the normal law 1(0,1). Since the
3(13)

random variables Yn are independent, centered at expectations and, by

Lemma 2, have positive variances, the Berry-Esseen normal ap..oximation

theorem ([5], p. 288) applies, yielding

SEL-687-098 20




i} 3/ B 2\3/2
s B )6t <8 Y EEH) <Z ElF )| ) . (4.19)

e (i) k=0 k=0

Let Fiij) be the distribution function of the law E(Ziij)); let

1/2
a-ﬁ“) . <; z EIY(id)I > .

k=0
Since
n -1/2 n -1
(3 meor) 3 o) oo
k=0 k=0
we have

f‘,f”)(x) _ Féij)(xir(li‘j)) )

Further, using Lemma 2, we find

n n 2 -3/2 n n -3/2
> EE) < 2 Eﬁi‘”l) <16c) '/ 3 v;2< 2 vi‘) -

k=0 k=0 k=0

Thus (4.19) becomes

(13) _(1j) -1 3 1/2 . -2 C -1 3/3
sup I (x) - ( o, ) ]I < 16C1 m z P, z P, .

x€ (-00,+0)

Finally, by the well known property of the distribution function G and

-1 -1
G[xz(gr(lii)> ] - G[xl(a.x(‘iJ)) ]I < (xz - x )(_(ij))

n -1/2
< (x, - x,)(20)"}/? n1/2< S p;1> : (4.21)

k=0

Lemma 2,
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Inequalities (4.20) and (4.21), together with the fact that the Berry-
Essen Theorem hold? both for right-continuous and left-continuous distri-
bution function Fnij) prove (4.18).

The following lemma is a trivial generalization of the law of

large numbers.

Lemma 4., Let [Xn: n=1,2,,,.) be a sequence of random variables with
distributions depending on a sequence of parameters § = {an:
n = 1,2,...}6@”; let (?n: n=20,1,.,.}) be a sequence of sub-g-
field of 4. If

n
n"2 z E|xk|2 ~ 0 uniformly in €6 (4.22)
k=1

and if the family (xl,...,xn} is ?n-measurable for every n = 1,2,...,
ggd”, then

n
P )
% z (xk - E(xklffk_l}) = 0 uniformly in J€@ . (4.23)
k=1

Proof of Lemma 4.

The proof is straightforward. Let € >0, let X' = X - E{xn|‘fn_1].
By Tchebichev Inequality

n n 2
P lZX' >eb <L E'Z x'| ‘ (4.24)
n k| = = n2€2 k '
k=1 k=1

However, since by assumption (X

.'F 1,-.0,

: variables x; are centered at expectations given the predecessors so that
) the extended Bienaymé Equality ([5]1, p. 386) holds., Therefore

xn} is gn-measurable, the random

n

n n
2 N 2 2
& B2 5= 2 Emis ) ER ST
k=1 k=1

k=1

..
4
P
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which, together with (4.,24) and assumption (4.22) gives (4.23),

This completes the Proof of Lemma 4.

Later, we will use one simple lemma on sequences of positive real

numbers.,

Lemma 5, Let {pn: n=20,1,...] be a sequence of positive numbers such

that for every n = 0,1,...

(n+ l)pn+l >np . (4.25)
Then
n-1
1 -1
liminf ——3 z p, >0 - (4.26)
n—»00 npn k=0 i
Proof.,

By (4.25) we have for every n = 1,2,...

-1 k -1
P, 2P, k=0,...,n1, (4.27)
Hence
n-1 n-1
1 -1 1 k n-1 1
-1 Py 2 n n - 2n 2 (4.28)
TP k=0 k=0
as n—++0o,

Lemma 5 is proven.

The remaining three lemmas constitute essential paris of the

theorems in the next chapter,

Lemma 6. Let [Yn: n=20,1,...} and {?n: n=0,1,,,.} be the sequences
of random vectors (3.5) and (4.2), respectively; let

&y e Z ¥, ), n=01,.., (4.29)
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and let
(W;r) hold for some r >3 . (4.30)

If the sequence {p : n = 0,1,...) of probabilities (3.2) satisfies
the conditions

P+ 0, (4.31)
and
np t 400 , (4.32)
then
n
L Z ¥ 5150 uniformly in all sequences $€O (4.33)
n k- Sk - 20 . y
k=1
Proof.

~{i
Let Yx(x 3) be the random variables (4.7). Since s'ed for all
=0,1,..., we have the identity

By Lemma 2 (4.14) and the condition (4.31), we have for every j =1,...,m;
ns= 1.2,.00

n n
e z Eﬁéi)] < (201)2:1111"2 z p;l < (201)2m(npn)-1 , (4.35)

k=1

(1)

which goes to zero by (4.32). Since the random variables Y
independent and centered at expectatioans, the weak law of large numbers

(or Lemma 4 with ¥ 1induced by {Y(i),..., (1)]) yields

Eo uniformly in _ﬁé@w : {4.36)

SEL-67-098 24
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e i

In view of (4.34), it remains to prove that for any 1 = 1,,,.,m,

i=1,...,m 1 #j,

n
15 3(13)g,(1) B %
= Z K Sy = 0 uniformly in Je® .,
k=1

(4.37)

Let Ypr B = 0,1,..., be the g-field induced by the family {Yo,...,Yn].

Since, clearly,

{?E*J)s;(*) 1t )Sé(i)}

is ‘yn-measurable for every n = 0,1,..., and since by Lemma 2 (4.15),

(4.31), and (4.32),

n n
2 2
n"2 2 Elqlsij)sl"(i)l < n"2 z Eﬁéi‘j)l - 0 uniformly in _Qee“ ,(4.38)

k=1 k=1
we obtain (4.37) from Lemma 4 if we prove that for any i # j

n

s 2 E{¥

k=1

sl

Y- 1}3 0 uniformly in _ﬂe@w .

Let

pit) . i Yﬁi) < min i YIEE) ,

£=1, ese,yill

Km_{iyﬁn iyz) |

kﬂ zl,...,m =o

1) < @) < ()
Ln = z Yk = z—lmin . Z Yk )
k=0 TEree T k=0

25

(4.39)

(4.40)

(4.41)

(4.42)
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so that by the definition of S;‘

(1) _ (1)
Sn IH£1)+a ILr(‘i) ’

(1)

whence, since 0 < Q <1 and H(i) U Lr(‘i) = Klgi),

n

1“(1)5 ni ST (4 - (4.43)

Therefore, almost surely

nin{E{?'(liJ)l (1) ‘yn_l} 'E{?,(,“)Ix(i)

H
n n

v

< kff19)s, 1 yn_l}

< max {E{?x(‘i‘j)l (1) ‘.'Jn-l} ’ E{?r(xij)l (1)

H K

: .44)
yn_l}} (4.44)

n n
We will consider first
é ~(13)
5 E{Yn Iﬂ(i) Yoo1( - (4.45)
n

Let [7n: n=12,,..) be a sequence of positive real numbers (truncating

conatants) ; let

f I‘,(,M) = {|?§13)| gyn}; £=1,...,m, (4.46)
m
§ F‘(‘i) = N r‘ﬁw) : (4.47)
i £=1
l 21
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n NIRRT TR LR PSR

Since clearly

~(14) ~(13) J)‘
Y\ - Y 1 (4.48)
n (1)~ 'n (1) (1) ’
H nry e
and since the random variable ,Y(ij)ll . 18 independent of %
we have almost surely ( n )
|p:{?<“)z y } E[?‘“)x u t < B{F9))
n (1){°n-1 n (1) . _(1)¥n-1 n (1 e
I H HO'NT, (rn
(4.49)
Further
(e _ 2 (18 )\e
(‘n ) - Z:l (ln ) g (4.50)
L#1
and by the definition of the random variable Yn
we(rr(’i“)", L#1=> [?r(l”)(u)l >y (4.51)
which, in turn, implies that either V( )(w) =1 or V(Z)(w) 1. Hence
ei ther
]?iih)(w)l >y, for all A=1,...,m; A£ 1,
or
|Y(i}‘)( )] =0forall A=1,...,m, A ¥4 .
Therefore,

" (18)\e
= [;)1 (Fn )
L#1

implies that either lyiij)(w)l >y, or |?£ij)(w)| = 0 so that
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~(14)
|y, 1

(4.52)

(r)e a '?x(x“)“(F(u))c

However,
{‘Y( J)‘I( (1J))C] 57:"!' E'qr(lij)! S (4C1)l' l"l(.'npn)l-r

by assumption (4 30) and Lemma 2 (4.15), so that (4.49) becomes i

$(13) . el3(13) L
l{ ‘(1) } E{“n Iﬂ(i)nr(i)Jn-l}l

r-l(

1-
yp )T

r
< tae))" oo,

Next, let us denote for £=1,...,m

(uz) ‘z $(18) . ~(i/l) z (1"’], (4.54)

(n-1 n
E‘(!iz) = Z ql(‘iﬁ) <7, z Al(‘iz) (4.55)
Lk=0 k=0
w | e SR) |
il ~(14 il ‘-
ISR B i A S (a.56) |
’ tkﬂ k=0 4
(1£)
where the numbers 4 are defined by (4.10). Also let
m m
i) . n ﬁr(lw). 51(11) = N u(iz) . (4.57)
n 4=1 g=1 "
L#1 L#1
It is easily seen that
m
u(i) = N H(iz) , (4.58)
n f=1 ™
L#1
SEL-67-098 28
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and for } # i

H_'ﬂ(ill)c Hr(1112)ﬁ rrEiZ) Cgiiz) _ (4.58)
whence
Er(‘i)c Hii)n I.,lsi)c iﬁi) . (4.60)
Thus
5(13) (13)+ . y(13)-
o ) ) Yn Iaii)nr 1) " 'n Iﬂgi)nr,!(li)
(13)+ o (1g)- +(13) 5(13)
<y Iﬁr(‘i) Y 15'(11) < [Yn |1i‘£1)_ E,(,i) + Y Iﬂ,(,i) , (4.61)
and, similarly,
3(i4) _ (i) 3(13)
Yn IHr(li)n Fr(‘i) 2 lYn Ilir(xi)_ ll1(11) + Yn Igl(‘i) . (4.62)
Since, by definition, both ﬁﬁi) and géi) are yn_l-measurable sets we
have
3(13) Jx(13)
E{Yr(li‘j Ig_‘(li)l‘y"'l} 2 Iﬂ,(,i)h{y's J }= 0 a.s. , (4.63)

and by Lemma 2 (4.15),
(i) l,
l"{IYn llix(li)' ﬂ,(‘i)!Jn-l}

- Jig(13)
= Iir(li)- ]_{‘éi) E{IYI‘I |} s 4C1 Iixsi)_ E!Ei) a.,s. (4.64)

We are now going to show that for suitable choice of the truncating

sequence (7n]

(1) 14 0 as n » » uniformly in J€®© , (4.85)

1
H(i)- H
n -n

29 SEL-67-098
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which is equivalent to showing that
=(1) _ (1)
p(un - H -0 as n » » uniformly in §€O . (4.66)

First, since

ﬁﬁi) - l_!'(li)c 3 (iﬁiz) - 51(11“), (4.67)
g:
2#1
p(il(li) - El(li)) < z p(iﬁiz) - H_n(iz)) . (4.68)
£=1
L#1

can be written as

Next, the set-theoretical difference ﬁﬁig) = ﬂilz)

iﬁiz) i “—n(i“ _ _(n_l)-l/z y - (n_l)-l/Z Z A}Sil) < zngf)
k=0

< @1) M2, L (@)Y S At o2, (a.69)

=0

and since there is no loss of generality by assuming P, < m 5

n=0,1,..., Lemma 3, together with (4.68), yields

n-1 -1/2
(m) - a0 < a2 2
k=0
n n -3/2
+ :izc::ama/2 z p;z z p;l . n=2,3,.... (4.70)
k=0 k=0

From the conditions (4.31) and (4.32), it follows that the sequence

{p;l: n=20,1,,..] satisfies the hypothesis of Lemma 5. The statement
then implies that there is a positive constant e <1 such that for every
n = 1,2,.-.
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n-1
-1
e,y < EE P (4.71)
k=0
Moreover, by (4.31) also
n-1
-A -\, _
z p, < nmp " A=1,2 . (4.72)
k=0

Applying these two inequalities to (4.70), we obtain

p<i§i) i 51(11)) : 7n(2"‘)1/2 C;1/2 -1/2 pl11/2

;3/2Bm3/2 (s )-1/2 N )

3
+ 32C1 c n

and trivially also for n =1 (for R small enough if necessary).
We will now select the constants y . To minimize both (4.53) and
the first term on the right-hand side of (4.73) simultaneously, we

require Yo to satisfy the equation

r _r-1 l-r _ 1/2 -1/2 -1/2 1/2
(ac))” m “(yp )" " =4cpy (2m)™/% c /% n p, - (4.74)

For such a y , the inequality (4.73) becomes

p<§§1) ) Eﬁi)) < (1c))? J1/2 c;1/2 3/2 (npn)l/Zr- 1/2

3 -3/2

+ 32¢° ¢
[o]

) 232 (p )Y2 nci2,..., (4.75)

n

g

and the right-hand side of the inequality (4.53) becomes

1/2 c-l/2 m3/2 (np )1/2r- 1/2 , n=1,2,,., . (4.76)

2
(4c,)” 2 o n

Now it is obvious that both these bounds tend to zero as n -+ +% so that

(4.66) holds, and by (4.53) we conclude that (4.45) goes to zero in
probability uniformly in Je®. Finally, it is easily seen that exactly

31 SEL-67-098




e O

(1)
(1) o
related to it by the set Kn and similarly related analogs.

the same reasoning applies if we replace the set H and all the sets

Therefore also

E ?iij)x (1) Y1 Eo uniformly in ﬂﬁ@x . (4.77)
K
n

which in view of (4.44) yields (4.39).
The proof of Lemma 6 is terminated.

Lemma 7, Let the hypothesis of Lemma 6 be satisfied. Then there is a
finite constant 02 such that for every n = 1,2,.,. and €@

lEﬁn *s')| < czms/z(npn)l/zr' 1/2 (4.78)

Proof.

Since the random vectors Yn are centered at expectations, the

identity
m m m
¥ .8 =1 z y1d)g: (1) L 1§ 5(1) (4.79)
n n m n n m n :
i=1l j=1 i=1
yields
EF - 8')] <3 max lEi?l(‘“)S,',(i)}l : (4.80)
1=1,...,m
J=1l,...,m

Proceeding similarly as in the proof o Lemma 6, we conclude that both
the inequalities (4.44) and (4.53) hold with conditional expectations
replaced by unconditional ones, The same is true for the relations
(4.63) and (4.64) so that (4.75) and (4.76), together with the remark
at the end of the proof of the previous lemma, gives for every i # J,
nl =] 15,2 5 ey, ﬁeé”,

EE19)s )y ¢ ¢ /2 (np )1/2"" 22 (4.81)
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where the constant C2 includes the constants Cl' co, B,

Lemma 7 is proven.

L.emma 8. Let the hypothesis of Lemma 6 be satisfied with the assumption
(W;r) replaced by the assumption (';»). Then there is a finite

constant C, such that for every n =1,2,.,., and J€®

3

- 5/2 -1/2
h oS!
(Y, +s!}] < cgm™ “(np ) 8 (4.82)
Proof.
The proof is only a modification of the proofs of Lemma 7 and Lemma 6.
Clearly, (U;o) implies (W';3) so that the hypotheses of the two previous

lemmas are satisfied. Moreover, under (I(;©) there is a finite constant

C4 such that for all i =1,..,,m; n = 0,1,...;

~(1) -1

’Yn | < C,mp, a.s. (4.83)
and consequently also for all j=1,...,m

|~(iJ 1

) -
Y | < 2C,mp 4.8, (4.84)

Thus we can set

-1
7n=2C4mpn y n=1,2,..-

in (4.46) whence in (4.48)

()

so that the right-hand side of (4.49) is zero and the first term on the

=0 a.s. (4.85)

right-hand side of (4.73) becomes

3/2 o ~V/2 3/2 (0 )Yz, (4.86)

g 4 o n
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This implies
|E{?f‘“)sl"(i))| < cama/z(m)m)'l/2 (4.87)

00
for every i # j; n=1,2,...; J€8 , which together with (4.80) proves

Lemma 8,
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Chapter V
MAIN THEOREMS

Theorem 1. Let [Yn: n=1,2,,..) be the sequence of pure strategies
generated by the strategic rule (*) defined in Chapter III; let
the sequence of probabilities (3.2) satisfy the conditions

p_ .0, (5.1)
and

nm11+wasn*+m; (5&)

let the assumptions (2.1), and (E;r) for some r > 3 be satisfied.
Then
n
1 P
. ZE W (s.8) - w(t) >0 (5.3)
k=1

uniformly in all sequences ﬁgd”.
Proof.

Let 3§ be an arbitrary sequence from @”; let for n = 1,2,...,3h be

the g-field induced by the family of random vectors

W Cogredsees W (500)s I (5.4)
where S is defined by (*).
By (2.16) and (2.17) we have for every n = 1,2,...
= S «eD, .
EMW (o¥ )5 1) =w(s .8 )  as (5.5)

o0
Furthermore, (w;r), r >3, implies that for every n = 1,2,..,, §§®
and 1 <r' <r

) ]
I«:[wn(an,sn”r gcz . (5.86)
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Therefore, by Lemma 4,

n

R

k=1

(5.3) 18 equivalent to

Z w(an,sn) - cp('rn) Bo uniformly in ge® . (5.7)

Let [S;: n=0,1,,..) be a sequence of random vectors defined by

where {Yn: n=0,1,,..}

n

s' =8 z Y. | (5.8)

n
k=0
is the sequence (3.5), and let us denote

n

xn =% zw(en’sn) ) (P(Tn) \
k=1
X =% z w(s .8!) - ot ) ' (5.9)
k=1
and =
Xi=2 S wiss ) - olr)
ket )
We have =
X -x 5;1; le(e 8,) - w(s,.8! )] (5.10)
k=1
and
n
X - x| < -'1; z lw(s,.8,) - wls,.8.)] - (5.11)
k=1

Let (U : n = 0,1,...) be the sequence of random variables (3.1). Since
by (*) and (5.8), U =0=>8 =8', and by (3.6) and (5.8),

U =0=Y =0=> S'
n n

-1
S' -1’ we conclude that

- ! =, =
|w(s,.8,) - wls ,8! )| >0=>vU =1, (5.12)
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and also

- ! = -
|w(s,,8,) - w(g ,8!)] >0=>U =1. (5.13)

From this and (5.6), it follows that the right-hand sides of both (5.10)
and (5.11) are both bounded by

2C
o

B (e

n
D b
k=1

which goes to zero almost surely because of the condition (5,1), Thus

we have

X -x'| 2% 0 and [X - X"
n n n n

88 o (5.14)

both uniformly in ge@”.

We are going to prove that the random variables X; are bounded from
above and the random variables xg from below by random variables that
both tend to zero in probability uniformly in ﬁgé”. This, in view of
(5.14), will prove (5.7).

Let us start with X'. Using (2.14), we obtain

n
Xp =g > Dew(r,80) - (e-1)w(t,,80)1 - of1)
k=1
n n
= ;1;[ 2 kw(Tk’Sl'() - z kw(Tk'Sl'ﬁl) - ncp('l'n)]
k=1 k=1
n-1
=1S kwin,,8)) - wrsy, 0]+ nln(r,sn) - glz))
k=1
n=1,2,.... (5.15)
Let "
z n1/2 z ¥in=12,..2 =0, (5.16)
k=0
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where ?n = Yn - E(Yn], n=20,1,.... By the definition of the mapping

»
s and by (4.1), we have

n

1 al

= Z P,{Yk] +
k:=0

s*(w(‘rn,.) + n-l/2 Zn) , N
\

3 e

n
! ¥ o)=e" "1/2 ntl
8 z Y =58 (w('rn,.) +n z +n = )

k=0

(5.17)

n
-
N
.
-

.

where neRm is the vector with all components equal to one. Applying now

_.-1/2 ; )
Lemma 1 with x = k 2., @ =8, @, =8 , to the summands in (5.15)

and with x = n']'/2 Z,0 = ( ('r . ), a, = Sl; we obtain in view of

(5.17) and (2.6) the relation
;5% z 2. (sk+1 - sl'() + n'l/2 zn-(s*(W(Tn..)) - S,'l)

=% Z ((1‘-1)1/2 z . - K12 zk)sl" . n"1/2 zn.s*(w(rn,.)) i

k=1 (5.18)

However by (5.16)

1/2 /2, _ % . _
(x-1) 2.,k T2 =-Y i k=12,..; (5.19)

so that (5.18) becomes

g..
IA
:1|o-a

z n1/2 zn-s*(w(’rn,.)) . (5.20)

The first term on the right-hand side of (5.20) goes to zero in proba-
bility uniformly in iee” by Lemma 6. Next, since s*(w('rn,.))ea,

n'l/2 zn.s*(w(rn,.)) < max i Z §(4) : (5.21)
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However, the random variables Yk ; k=0,1,,..; are independent and

centered at expectation, and by Lemma 2 (4.14) and (5.1)

n n
2
-2 ~(1) 2 -2 " -1 2 -2 -1
n E lYk | < (201) mn é P, < (2C1) mn (n+1)pn , (5.22)

which goes to zero by the condition (5.2). Hence by the weak law of
large Bdmbers. ([s], p. 234, prop. b)

n
22 Qéi) o uniformly in iﬁd” (5.23)

S |-

for all 1 =1,...,m. Because of (5.21), the same is true for the last

term of (5.20) so that

limsup X' = 0 in probability uniformly in ﬂgd” . (5.24)
n—~+oo

It remains to show that also

liminf X! = 0 in probability uniformly in ge6 . (5.25)
400

For this, let us write using again (2.6)

M::

xll l
n

2 [w('rk g 1) - W(Tk'sl'()] + w(rn,s;) - (p('l'n) . (5.26)

k

1

Using (5.17) and applying again Lemma 1 to the summands, this time with

2 Sé p’ Ve obtain

w(t, .8y _4) - wlt,,80) 2 k1/2 2:(sp - s) 1) . (5.27)

TOr Lemma 4 with 36 induced by {Qgi)'.‘.,qii)}.
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Further by (2.6)

w(Tn,Sl") - cp(Tn) >0, (5.28)
8o that
Y,
" l z 1/2 q! . ]
Xa 20 K0 z(8y - sp )
k=1
n
_1 Y\ _1y1/2 1/2 -1/2
= ((k 1) %2 -k zk).sk_lux zs' . (5.29)
k=1

Hence by (5.19) and the fact that S,€d, we obtain

n
1 (1),
ZE Yk ‘ ; n=1,2,..., .

n
k=0 (5.30)

n
1 ~
X&) - = :E Y -8' - max
] n k 131,...,m

Let, for every n = 0,1,..., 9n denote the g-field induced by the family
[Yo.....Yn]. Since the random vectors ;n and S;-l are independent and

8; is yn-nenlurable, we have for all n =1,2,,...

v . ] -~ o A ' -
E(Y‘ Sn_l yn-lj = E[Yn} Sn_l =0 a,.8, (5.31)
Hence, by Lemma 4 and (5.22),
1 R 0 uniformly in J€8
n u y 1n J€b ,

n
v '
2 Y %
k=1

and by (5.23) the same is true for the last term in (5.30). Thus (5.25)

holds and Theorem 1 is proven.

Because of assumption (wqr), the dominated convergence theorem

implies that under the conditions of Theorem 1 also
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n
E % :E - ;(Tn) -~ 0 uniformly in 0 , (5.32)

It is, nevertheless, of interest to investigate the rate of this

convergence.

Theorem 2, Let t.: hypothesis ot Theorem 1 be satisfied.

Then

1 : o -1/2+1/2r

E{s Z W (o8, )4 - ot )] =0 [max (p ), ((npn) )
k=1

(5.33)

uniformly in all sequences ﬂg@x.

Proof.
Proceeding exactly as in the proof of Theorem 1,we observe that the

random variables (5.9) satisfy for every n = 1,2,... the inequality

X % i <X <X i (5.34)

Since the random variables Un take values 0 and 1 with P{Un =1} =p_,

SlH

we have

n n
E(X]) - 2¢, ¢ z <EX) < EX!) + 2, & z (5.35)
k=1 k=1

Furthermore, the inequality (5.20), Lemma 7, and the fact that
E{z ) = 0 imply

n
E(X!) < C,m 2% z K k)'l/2+ v/ar (5.36)

and the inequality (5.30), independence of ?k and S&_l. and E(Y

k =1,2,..., give

41 SEL-67-098




DN 020 v v 6 @

(5.37)

Next, by Jensen Inequality, Bienaymé Equality, and (5.22) we have

for every i = 1,...,m

n 2 n 2 n 2
g1 ~(1) 1 ~(1) 15 ‘~<i)’
hnZYk <EL D> ¥ IS

k=1

k=1 k=1
2 -1
< (2c))" m(np )~ ,

so that (5.35) becomes

However, by (5.1), (5.2), and r > 3,
S f251/
1 -1/2+1/2r -1/2
=S () > (np,)
k=1

so that the first term in (5.39) is lower-bounded by

] % :E (kpk)-1/2.+1/2r .
k=1

Theorem 2 is proven,
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Theorem 3, Let tii. lLivpothesis of Theorem 1 be satisfied with the
assumption (W';r) replaced by the assumption (U ;).

Then
E }liz wk(ak,\yk) - cp(‘rn) = 0 [max (E), ((npn)'1 2) (5.41)
k=1

uniformly in all sequences €@,

Proof.

The proof is verbatim that of Theorem 2, except that Lemma 8 is

used instead of Lemma 7 so that the exponent 1/2r vanishes from (5.36),
(5.39), and (5.40), and the constant C, is replaced by the constant C

3
of Lemma 8.

To the end of this chapter, let us consider the case in which the
sequences § of Nature's strategies are sequences of independent identically
distributed random variables. More precisely, let us suppose that Nature
at the beginning of the sequence of plays selects a probability measure
T from a class T, of probability measures defined on the measurable space

1

(@,5‘). The class T, and the g-field J., not necessarily identical with
1 1

1
those introduced in Chapter II, are supposed to be given, however, unknown
to the player. We also assume that the random loss function U is such

that for every a€A, TeT w(.,a) is for almost every we\ a ﬁl-measurable

1,
and T-integrable function,
In this setup, let TeT1 and let

(0: n=1,2,...) (5.42)

be a sequence of independent identically distributed random mappings from
(a,4) into (@,ﬁl) such that P®;1 = T and such that the sequences (5.40),
(3.1), (3.3), and (2.15) for any fixed ﬁgd” are mutually independent.
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Theorem 1 then yields immediately

(5.43)

n

1 P

= z wk(ok,\yk) - ¢(T) > 0 wuniformly in TeT, .
k=1

However, we may establish a stronger convergence in this case.

Theorem 4, Let {yn: n=1,2,...]) be a sequence of pure strategies
generated by the strategic rule (*) of Chapter 11I; let the sequence
of probabilities (3.2) satisfy the conditions

p,+ 0 (5.44)

and

nl"epn t + o for some € >0 ; (5.45)

let the assumptions (2.2) and (W);2) be satisfied, Then

n
1 a.8.
- jz wk(ok.wk) -o(t) "o (5.46)
k=1
uniformly in all TeTl.
Proof.
Let TeT1 ana let again 35 denote the g-field induced by the family

(5.4), where now 01.02,... is the sequence (5,42). By the measurability
and integrability assumption we made about the random loss function, we

have now instead of (5.5)

E(w (6 ,¥ )[F ;) =w(t,8) a.s. (5.47)
Hence, using the assumption (I/;2) and Stability Theorem ([5], p. 387),
we conclude that (5.44) is equivalent to showing

n
D w(t,8 ) - o(T) 858+ 0 uniformly in TeT
n "“n

k=1

= (5.48)
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Let X , X! and X! be defined as in (5.9) with 9, and T replaced by T.

By the same reasoning as in the proof of Theorem 1, we conclude that
(5.14) holds again, now uniformly in T€T1.
By ihe relation (5.17) and Lemma 1 we have [

25 Qk-_s*(w(T,.)) - S;]
k=0

S =

w(T,S;) - @(T) <

INA

n
max L z i"(i) , (5.49)
n k
i=1l,,..,m

and by the assumption (\’;2) and Lemma 2 (4.14) for every 1 =1,,..,m

n 2 n
N -2 (1) 2 -2 -1
2 k “Ely,"7] < (2¢)m Z k" p . (5.50)
k=1 k=1
However, by (5.45), the series
0
-2 -1
z ko py
k=1

converges so that by the strong law of large numbers ([5], p. 238, prop A)

the right-hand side of (5.49) converges to zero almost surely uniformly

in T€T1.
As for X", by (5.31), (5.50), and Stability Theorem
n
1 > - a.s,
" Z Y, S, * 0 uniformly in TeT , (5.51)
k=1 ]

so that the same is true for both terms on the right-hand side of (5.30).
Therefore, (5.24) and (5.25) hold almost surely uniformly in T€T,,

which together with (5.14) terminates the proof. i

Theorems 2 and 3 appear also in a stronger version,
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Theorem 5. Let {Yn: n=1,2,,..}) be a sequence of pure strategies
generated by the strategic rule (*) of Chapter III; let the
sequence of probabilities (3.2) satisfy the conditions (5.1) and
(5.2) of Theorem 1; let the assumptions (2.2) and (I’;2) hold.
Then

[Ew (o ,¥ )] - o) = O(max(pn.(npn)'l/zl) (5.52)
uniformly in all TeTl.

Proot.
Proceeding as in the proof of Theorem 4, we obtain the inequality

Ew(t,8!_)) - o(t) - 2¢_ p < E(w(o,¥ )} - o(7)
< Ew(t,8!)} - o(t) + 2¢ p_ . (5.53)
From (5.49) and (5.38), we have
E(w(t,8.)) - (t) < 2¢, mn ! (n+ 1)1/2 p;l/z . (5.54)

Next, by (5.28) and Lemma 1

E(w(t,8! 1)) - o(v) 2 E(w(t,8; ;) - w(1,8;))

-’ n

n

-

s . =mx E|Z 2 Yl\('i) (5.55)
i=1,...,m k=0

so that by (5.22) also

E(w(t,8! 1)) - o(t) > -2¢; mn™} (n+1)}/2 p;l/z . (5.56)

lience (5.56), (5.54) and (5.53) give the statement.

The theorem is proven,
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. Chapter VI
CONCLUDING REMARKS

In this last chapter, let us make a few remarks concerning various
assumptions we have made, possible generalizations, and relationships
to other problems,

First, let us consider the rate of convergence established in
Theorems 2, 3, and 5. It is easy to see that, for example, the choice l

p =n 2, 0<q< 1, which satisfies both the conditions (5.1) and (5.2)

n -1-4r/1-3r
and (5.44) and (5.45).yie1ds the maximum rate O(n

) under the

assumptions of Theorem 2, that is, O(n-1/4) in the most unfavorable case

-1/3
of r = 3, and the maximum rate O(n 1/ ) under the assumptions of Theorems

3 and,5. This is, of course, considerably slower than the typical rate

0(n-1/2) of Blackwell's and Hannan's rules and others derived from them, {
Notice, however, that the strategic rule suggested in this paper does

not make use of all the information available to the player since the

information obtained during active plays is disregarded, principally for

the sake of simplifying the proofs. It is, nevertheless, conceivable

that if the disregarded information were used, the rate of convergerce

might be improved. One way of doing this may be to record the loss dur-

ing active plays as well and switch to another strategy as soon as the

accumulated loss for the strategy being used decreases under the next |
largest value of accumulated losses recorded hefore.

As far as the assumptions of the theorems are concerned, the assump-
tion (W';r) was necessary for the proofs and can hardly be removed unless
the method of proofs is changed considerably, The assumption (2.2) is
merely a technical matter, as mcntioned earlier. The remaining assump-
tion (2.1) was introduced to keep the variance of the random variables
%ﬁi) nonzero (see Lemmas 2 and 3). For the same reason, the vector n
[see (3.6)] appeared in the definition of the strategic rule (*). Some |
considcrations indicate, however, that the same effect would be achieved !
without the assumption (2.1) if we replaced the vector )} in (3.6) by the

random vector with i-th component (i = 1,...,m) equal to sign (wn(ﬁn,a(i>).

a Notice also that neither the assumption (2.1) nor the vector n is needed

to cstablish the truth of Theorems 4 and 5.
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In Theorem 1, we have proven uniform convergence in probability,
Naturally, a question arises of whether a stronger convergence--i.e,,
whether convergence almost surely can be proven., This may quite be the
case; we were, however, unable to do this here and the question remains
open,

Next, let us discuss briefly the possibility of generalizing the
results to infinite games (i.e., when the set A 1s infinite), For A
denumerable, this might in principle be done by letting the random
vectors Vn take values in finite subsets AnC:A (again with uniform dis-
tribution on the vertices of the simplex spanned on An) and then let
mn, the cardinality ot An' tend to infinity slowly encugh., It is clear,
however, that in this case the convergence in Theorems 1-5 may not be
uniform unless the generic game possesses some propertics (e.g., to be
totally bounded in the sense of Wald's metric) that makes it approximable
by finite games., This is even more evident for the case in which A is
uncountable. Nevertheless, there is a large class of games with the
above properties (e.g., games on the unit square, polynomial games, etc.)
so that some investigation in this direction might be worthwhile,

We weculd also like to mention that the problem studied here is closely
related to the so-called "two-armed bandit problem" (see, e.g., ref. [7]);
in fact, it includes the latter as a degenerate case. The two-armed (or
more generally m-armed) bandit problem can be briefly described as fol-
lows: Given are m independent random experiments with outcomes 0 (success)
and 1 (failure) having probabilities 1 -a; and x5 4 =1,,..,m; respec-
tively, which are either unknown or to which of the m experiments a par-
ticular pair (gi, = ni) belongs is unknown, These experiments are
independently repeated; at each step only one of them is allowed to be
performed. The problem is to find a rule for pertorming these experiments
that would minimize the expected average number of failures. Clearly,
no rule can do better than to achieve min(nl,....nm] which is nothing
but the value of the minimum functional ; of the game with random loss

function (~,A,t), where - is one-element set (-} and

1 with probability iy

0O with probability l-ui IR=N] Ao,
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Thus our rule can be used for this problem and we conclude fron

Theorem 4 that the average number of failures converges almost surely to

min{ i ....nm} while Theorem 5 states that the expectation of a failure

1 ’

in n-th experiment converges to minf{n
-1/2

O(max(pn.(npn) }).

Finally, let us make a few remarks about the case when, instead of

1,...,nm) with the rate |

a sequential game against Nature, we consider a sequential game against
an opponent {(malicious or not); that is, if we allow the strategies én
of the first player to depend on the past strategies of the s2cond
player and on the losses incurred., This is the case studied recently by
A, Banos {1] under the same assumptions about the information available
to the second player as we have made and under nearly the same assump-
tions about the generic game, viz., A finite and GE;2). He succeeded

in exhibiting a strategic rule for the player with the property that
the average loss is, with probability one, asymptotically not greater
than the value of the generic game (= maximum of the minimum functional),
However, as can easily be seen, his strategic rule need not have the
optimum property (5.3) even in the sequential game against Nature, On
the other hand, our rule fails to have this optimum property in a sequen-
tial game against an opponent and, in general, does not even guarantee
that the average loss will achieve the value of the game. This can be
seen from the following simple example (due to T. M. Cover): Consider
the generic game of "matching pennies," i.e., A = © = (0,1} and W(y,a) =
w(g,a) = [ﬁ-a' nonrandom, and suppose that the opponent decided to play
for each n =1,2,..., 6n+1 =1 if Yn = 0, and vice versa, Since,
according to our rule, the player does not change his strategy between
successive active plays and since the condition pn¢ O implies that long
runs of active plays will occur more and more often, the average loss

incurred by the player will tend to 1 while the value of the game is 1/2,

Thus the only rule known at this time which retains the optimum property
(5.3) (in the a.,s. sense) in both the sequential game against Nature and
against an opponent is the rule of D. Blackwell [3]. The question remains
open whether a similar rule exists even when the player's information is

so severely limited as assumed in this paper.
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